Cylc Response to “Assessment Report on Autosubmit, Cylc and ecFlow”

Hilary Oliver, Andrew Clark, Ben Fitzpatrick, David Matthews, Oliver Sanders, Matthew Shin, 17 Feb 2017

The Cylc developers would like to respond to a recent comparison paper, Assessment report on Autosubmit,
Cylc and ecFlow (2016, Domingo Manubens-Gil et. a/.ﬂ and another that references it, Seamless Manage-
ment of Ensemble Climate Prediction Experiments on HPC Platforms (2016, Domingo Manubens-Gil et.
a/.)E] Two of us are listed as contributors to the first paper but it should be noted that the contribution was
limited by time and workload constraints to major corrections relating to Cylc (all of which were addressed
by the lead author).

The lead author of both papers is also the lead developer of Autosubmit. Perhaps inevitably as the
developers of Cylc we have a rather different view on the strengths and weaknesses of the different systems.
In particular we would like to address the following points.

1. The report includes a special type of workflow that happens to be Autosubmit’s primary use case, a
finite “multi-run ensemble experiment” in which each member of an ensemble is split into chunks (e.g.
a ten year integration may be split into ten one-year chunks), and the whole structure is replicated
over several runs (e.g. to run the same experiment for different start dates). The Autosubmit example
appears notably briefer than Cylc’s and ecFlow's, but we believe this would not be the case for other
types of workflow, because:

e Autosubmit’s built-in support for this workflow allows it to replicate tasks across “members”,
“chunks”, and “runs” for the specific structure described above. But this is not a general param-
eter expansion mechanism; for other workflows every task would have to be defined separately.

e The Cylc examples generate these tasks with explicit loops over the parameters. This is relatively
verbose compared to Autosubmit (for this type of workflow) but it is completely general: Cylc
can expand any number of arbitrary parameters at any point in a workflow.

e Since cylc-6.11.0 parameterized tasks can achieve exactly the same simplification in Cylc, but
without sacrificing generality. (The report’s authors could not have anticipated this, however.)

e We acknowledge that the other example included (GloSea5) derives from a real Cylc suite.
However, the structure of that workflow is also of the special form just described.

2. In order to compare like with like, the Cylc GloSea5 example should have been simplified:

e It contains a lot of functionality that Autosubmit (and to a lesser extent ecFlow) does not have:
clock triggers; conditional, failure, and suicide triggers for automatic recovery workflows; and
date-time cycling. For many readers this will only give a misleading impression of complexity.

e It derives from a real operational Cylc suite with very long descriptive task and variable names,
and as such the scheduling graph is not suited for display in a narrow document format. The
resulting messy line-wrapping further contributes to a misleading impression of complexity.

e (As per the third bullet-point under 1. above, this workflow could be greatly simplified by
rewriting it in terms of parameterized tasks instead of explicit loops).

3. It is briefly mentioned that Autosubmit does not have task families, but not why this is considered
a critical feature in Cylc: in large workflows task families allow efficient mass triggering, efficient
sharing of common task configuration without duplication or resort to global variables, efficient user
interaction (e.g. to manually retrigger all members of a family at once); and tidier visualization and
monitoring (summary state information is displayed for collapsed task families).

! https://earth.bsc.es/wiki/lib/exe/fetch.php?media=tools:is-enes2_d93_v1.0_mp.pdf
2 http://specs-fp7.eu/sites/default/files/ul/dmanubens_hpcs_2016.pdf


https://earth.bsc.es/wiki/lib/exe/fetch.php?media=tools:is-enes2_d93_v1.0_mp.pdf
http://specs-fp7.eu/sites/default/files/u1/dmanubens_hpcs_2016.pdf

. There is no discussion of scheduling configuration, a major point of difference between the tools that is
apparent in the examples. Cylc's clean separation of scheduling and task runtime configuration allows
users to work directly with workflow structure and it provides the basis for our advanced scheduling
semantics (conditional, family, message, and task state triggers, etc.). In Autosubmit the workflow
structure is implicit; it has to be reconstructed from the dependencies specified in each task definition.

. Workflow cycling is another topic with significant implications that could have been expanded on:

e In Autosubmit we believe the entire workflow from start to finish is generated at start-up, with
a different logical task for every job (the “chunks” referred to above are a proxy for dynamic
cycling). Its workflows must therefore be finite in extent and not too large, and its users (like
Autosubmit itself) are presented with the entire workflow at run time. This is a bigger barrier
to open-ended real-time operational use than lack of real-time clock triggers.

e Cylc can generate these finite cycling-like static workflows for cycling jobs too, using parameter-
ized tasks or Jinja2 loops. But Cylc also supports a flexible and powerful standards-based (ISO
8601) cycling notation for defining continuous ongoing workflows of cycling tasks. These get
extended dynamically, potentially indefinitely, with no hard boundaries between the cycles.

. The second paper states that a Python API for workflow definition (ecFlow), as opposed to a configu-
ration file, is “easy, robust, and powerful”. This point is debatable because most users are not primarily
programmers, and a workflow definition of any type just configures the behaviour of a program (the
workflow engine) which is precisely what configuration files are for. Config files are manifestly simpler
and more robust than (most) programs: they are comprised of simple key=value pairs that can be
validated against a spec, and have a consistent clear structure. Cylc's config files make it possible
to write complex workflow definitions that can be understood at a glance by non-programmers. The
main reason for programmability in this context is to allow efficient automatic generation of parts of
a workflow definition, e.g. for ensembles of similar tasks, and Cylc users get this by embedding Jinja2
code anywhere in the config file. Jinja2 is Python-like, powerful, and extensible with custom Python
filters. That said, we are still considering a Python workflow definition API for additional flexibility.

. The second paper also asserts that with “a high number of cycle points active at the same time,
the [Cylc] GUI could get slow and unresponsive”. The Cylc GUI's efficiency, even on a low-spec
laptop VM, is now such that the tree and dot views remain nicely responsive to the largest of current
operational NWP suites (with several thousand cycling tasks). The (optional) graph view depends on
the performance of the underlying graphviz layout engine and it struggles with very large ungrouped
graphs. But that would not be the view of choice for very large suites anyway, and besides neither
Autosubmit nor ecFlow have a live dependency graph view for comparison.

. We don't regard lack of a built-in experiment database and version control integration as a limita-
tion of Cylc any more than (say) lack of a program database and version control integration is a
limitation of any programming language. Individual users and small and large sites may have very
different requirements and preferences in this regard. Rose is used at many Cylc sites to provide this
functionality. As the second paper notes Rose does increase the complexity of the software stack
(somewhat), but it provides a powerful solution for workflow storage, discovery, and version control,
and it supports inter-site collaborative development.

. Cylc is a general purpose tool with a proven record in research and production environments. By
contrast Autosubmit is quite specialized and is not geared for operational use, so the reports do not
consider a host of other Cylc capabilities, some of which are not just useful in operations. Examples
include internal queues, event handling, broadcast functionality, edit-runs, inter-suite triggering, and
a powerful command line interface that can operate on many tasks at once.



